Getting getting ---------------- Begin by importing the pysoplot module. .. code-block:: python import pysoplot A test data set can be accessed from the ``pysoplot.data`` module. .. code-block:: python dp = pysoplot.data.LA0708 The analytical uncertainties on this data set are given at the :math:`2\sigma` level. As a general rule, functions in pysoplot expect uncertainties to be given as :math:`1\sigma` absolute, so we will need to transform these before continuing. .. code-block:: python dp = pysoplot.transform.dp_errors(dp, 'abs2s') Now that these data point uncertainties are in the correct form, we can fit a linear regression. by setting the ``plot`` argument to ``True``, we have told the function to also compile a plot of the data points and regression fit. .. code-block:: python fit = pysoplot.regression.robust_fit(*dp, plot=True, diagram='tw') This function returns a dictionary containing the regression fitting results and the plot. We can print the regression results and show the plot .. code-block:: python pysoplot.misc.print_result(fit, 'Regression results') fit['fig'].show() Now that we have fitted a regression line, we can compute a concordia intercept age .. code-block:: python tw = pysoplot.upb.concint_age(fit, method='Powell') More coming soon...